首页> 外文OA文献 >Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors
【2h】

Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

机译:使用Procrustes形状分析和椭圆傅立叶描述子的基于轮廓的步态识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods.
机译:本文提出了一种步态识别方法,该方法结合时空运动特征,统计和物理参数(称为STM-SPP)对人类对象进行分类,方法是使用Procrustes形状分析(PSA)和椭圆傅立叶描述符(EFD)。 STM-SPP利用时空步态特征和人体物理参数来解析PSA获得的探针序列与通道序列之间相似的相似性评分。还引入了使用EFD的基于零件的形状分析,以实现针对携带条件的鲁棒性。结合PSA和EFD的分类结果,使用基于Hu矩的轮廓匹配来解决排名中的平局。实验结果表明,STM-SPP优于几种基于轮廓的步态识别方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号